187 research outputs found

    Convergence of the all-time supremum of a L\'evy process in the heavy-traffic regime

    Get PDF
    In this paper we derive a technique of obtaining limit theorems for suprema of L\'evy processes from their random walk counterparts. For each a>0a>0, let {Yn(a):n1}\{Y^{(a)}_n:n\ge 1\} be a sequence of independent and identically distributed random variables and {Xt(a):t0}\{X^{(a)}_t:t\ge 0\} be a L\'evy processes such that X1(a)=dY1(a)X_1^{(a)}\stackrel{d}{=} Y_1^{(a)}, EX1(a)<0\mathbb E X_1^{(a)}<0 and EX1(a)0\mathbb E X_1^{(a)}\uparrow0 as a0a\downarrow0. Let Sn(a)=k=1nYk(a)S^{(a)}_n=\sum_{k=1}^n Y^{(a)}_k. Then, under some mild assumptions, Δ(a)maxn0Sn(a)dR    Δ(a)supt0Xt(a)dR\Delta(a)\max_{n\ge 0} S_n^{(a)}\stackrel{d}{\to} R\iff\Delta(a)\sup_{t\ge 0} X^{(a)}_t\stackrel{d}{\to} R, for some random variable RR and some function Δ()\Delta(\cdot). We utilize this result to present a number of limit theorems for suprema of L\'evy processes in the heavy-traffic regime

    On the localized phase of a copolymer in an emulsion: supercritical percolation regime

    Get PDF
    In this paper we study a two-dimensional directed self-avoiding walk model of a random copolymer in a random emulsion. The copolymer is a random concatenation of monomers of two types, AA and BB, each occurring with density 1/2. The emulsion is a random mixture of liquids of two types, AA and BB, organised in large square blocks occurring with density pp and 1p1-p, respectively, where p(0,1)p \in (0,1). The copolymer in the emulsion has an energy that is minus α\alpha times the number of AAAA-matches minus β\beta times the number of BBBB-matches, where without loss of generality the interaction parameters can be taken from the cone {(α,β)R2 ⁣:αβ}\{(\alpha,\beta)\in\R^2\colon \alpha\geq |\beta|\}. To make the model mathematically tractable, we assume that the copolymer is directed and can only enter and exit a pair of neighbouring blocks at diagonally opposite corners. In \cite{dHW06}, it was found that in the supercritical percolation regime ppcp \geq p_c, with pcp_c the critical probability for directed bond percolation on the square lattice, the free energy has a phase transition along a curve in the cone that is independent of pp. At this critical curve, there is a transition from a phase where the copolymer is fully delocalized into the AA-blocks to a phase where it is partially localized near the ABAB-interface. In the present paper we prove three theorems that complete the analysis of the phase diagram : (1) the critical curve is strictly increasing; (2) the phase transition is second order; (3) the free energy is infinitely differentiable throughout the partially localized phase.Comment: 43 pages and 10 figure

    Countable Random Sets: Uniqueness in Law and Constructiveness

    Full text link
    The first part of this article deals with theorems on uniqueness in law for \sigma-finite and constructive countable random sets, which in contrast to the usual assumptions may have points of accumulation. We discuss and compare two approaches on uniqueness theorems: First, the study of generators for \sigma-fields used in this context and, secondly, the analysis of hitting functions. The last section of this paper deals with the notion of constructiveness. We will prove a measurable selection theorem and a decomposition theorem for constructive countable random sets, and study constructive countable random sets with independent increments.Comment: Published in Journal of Theoretical Probability (http://www.springerlink.com/content/0894-9840/). The final publication is available at http://www.springerlink.co

    Expected length of the longest common subsequence for large alphabets

    Full text link
    We consider the length L of the longest common subsequence of two randomly uniformly and independently chosen n character words over a k-ary alphabet. Subadditivity arguments yield that the expected value of L, when normalized by n, converges to a constant C_k. We prove a conjecture of Sankoff and Mainville from the early 80's claiming that C_k\sqrt{k} goes to 2 as k goes to infinity.Comment: 14 pages, 1 figure, LaTe

    Positive temperature versions of two theorems on first-passage percolation

    Full text link
    The estimates on the fluctuations of first-passsage percolation due to Talagrand (a tail bound) and Benjamini--Kalai--Schramm (a sublinear variance bound) are transcribed into the positive-temperature setting of random Schroedinger operators.Comment: 15 pp; to appear in GAFA Seminar Note

    Antiferromagnetic Potts model on the Erdos-Renyi random graph

    Full text link
    We study the antiferromagnetic Potts model on the Poissonian Erd\"os-R\'enyi random graph. By identifying a suitable interpolation structure and an extended variational principle, together with a positive temperature second-moment analysis we prove the existence of a phase transition at a positive critical temperature. Upper and lower bounds on the temperature critical value are obtained from the stability analysis of the replica symmetric solution (recovered in the framework of Derrida-Ruelle probability cascades)and from a positive entropy argument.Comment: 36 pages, revisions to improve resul

    Trend-based analysis of a population model of the AKAP scaffold protein

    Get PDF
    We formalise a continuous-time Markov chain with multi-dimensional discrete state space model of the AKAP scaffold protein as a crosstalk mediator between two biochemical signalling pathways. The analysis by temporal properties of the AKAP model requires reasoning about whether the counts of individuals of the same type (species) are increasing or decreasing. For this purpose we propose the concept of stochastic trends based on formulating the probabilities of transitions that increase (resp. decrease) the counts of individuals of the same type, and express these probabilities as formulae such that the state space of the model is not altered. We define a number of stochastic trend formulae (e.g. weakly increasing, strictly increasing, weakly decreasing, etc.) and use them to extend the set of state formulae of Continuous Stochastic Logic. We show how stochastic trends can be implemented in a guarded-command style specification language for transition systems. We illustrate the application of stochastic trends with numerous small examples and then we analyse the AKAP model in order to characterise and show causality and pulsating behaviours in this biochemical system

    Gaussian queues in light and heavy traffic

    Get PDF
    In this paper we investigate Gaussian queues in the light-traffic and in the heavy-traffic regime. The setting considered is that of a centered Gaussian process X{X(t):tR}X\equiv\{X(t):t\in\mathbb R\} with stationary increments and variance function σX2()\sigma^2_X(\cdot), equipped with a deterministic drift c>0c>0, reflected at 0: QX(c)(t)=sup<st(X(t)X(s)c(ts)).Q_X^{(c)}(t)=\sup_{-\infty<s\le t}(X(t)-X(s)-c(t-s)). We study the resulting stationary workload process QX(c){QX(c)(t):t0}Q^{(c)}_X\equiv\{Q_X^{(c)}(t):t\ge0\} in the limiting regimes c0c\to 0 (heavy traffic) and cc\to\infty (light traffic). The primary contribution is that we show for both limiting regimes that, under mild regularity conditions on the variance function, there exists a normalizing function δ(c)\delta(c) such that QX(c)(δ(c))/σX(δ(c))Q^{(c)}_X(\delta(c)\cdot)/\sigma_X(\delta(c)) converges to a non-trivial limit in C[0,)C[0,\infty)
    corecore